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Plant growth and development must be coordinated with

metabolism, notably with the efficiency of photosynthesis and

the uptake of nutrients. This coordination requires local

connections between hormonal response and metabolic state,

as well as long-distance connections between shoot and root

tissues. Recently, several molecular mechanisms have been

proposed to explain the integration of sugar signalling with

hormone pathways. In this work, DELLA and PIF proteins have

emerged as hubs in sugar-hormone cross-regulation networks.
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1 Umeå Plant Science Centre (UPSC), Department of Forest Genetics

and Plant Physiology, SLU, SE-901 83 Umeå, Sweden
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Introduction
Plants are autotrophic organisms that rely on light to

produce sugars. Not surprisingly, in addition to acting

as an essential source for carbon metabolism in plants,

sugars also act as signalling molecules that modulate a vast

array of plant developmental processes [1]. In both of

these contexts, plants must manage their carbon resources

carefully. The amount of carbon that will be fixed the

next day is largely unpredictable at dusk, yet, during the

night, starch degradation is tightly controlled so that it is

almost but not totally exhausted at dawn [2].

Environmental stresses further challenge energy balance.

With growth itself consuming energy, trade-offs exist

between growth and adaptation to unfavourable environ-

mental conditions. Plant hormones play an essential role

in plant growth and development. Multiple mechanisms

exist to coordinate hormone-driven processes so that they

are energetically compatible with the carbon status of

the plant. These mechanisms may act by modulating
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hormone synthesis, transport and signalling, so that the

hormonal responses promoting growth are dampened in

conditions of limited carbon resources. Sugar-sensing as a

mechanism for fine-tuning of the hormonal response is of

critical importance [3]. Feedback mechanisms that con-

nect back in the opposite direction are also likely, al-

though mechanisms for controlling hormone production

and response are more straightforward to regulate than

the often unpredictable light-driven production of sugar.

Here, we will focus on the ways plants adapt their

hormone-dependent processes on the metabolic status

of the plant, and how this interaction shapes the plant to

improve its overall fitness in a given environment.

Metabolic interactions, long-range signalling
and hormones
Light is the most powerful environmental cue for a

photosynthetic organism. Alongside the advantages of

using light to produce your own food supply, photoauto-

trophy brings a number of significant regulatory challenges.

These challenges are especially acute in multicellular

plants, where carbon fixation is restricted to a subset of

cells (a population that changes in number and location

over developmental time), and these cells need to then

share their metabolic products with cells at a distance. To

compound this problem, cellular life requires a sensitive

balancing between the amount of fixed carbon and other

raw materials, like nitrogen and water. Functional equilib-

rium is a term that has been used to describe the way plants

promote growth in above- or belowground tissues to con-

stantly correct metabolic imbalances [4]. For example, in

bright light where fixed carbon might be accumulating at a

rapid rate, the plant devotes energy to increase the uptake

of nitrogen through induction of nitrogen transporters and

increased production of lateral roots [5].

The plant must balance metabolic demands across the

plant, while also managing dramatic daily fluctuations in

carbon fixation rates. During the day, growth is fuelled by

sugars produced by photosynthesis, while at night growth

relies on starch [6]. Arabidopsis mutants defective in either

starch synthesis or degradation are smaller than wild-type

plants, indicating that starch metabolism at night is re-

quired for growth [7�,8]. Many genes involved in hormone

synthesis and signalling are expressed at dawn, coincident

with the maximal rate of growth in the same experimental

conditions [9]. The peak of growth at dawn requires light

[10], but it does not correlate with maximum sugar

availability, which occurs later in the day. This result

leaves open the precise relationship between growth
www.sciencedirect.com
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stimulated by sugars and growth stimulated by hormones.

Any organ-specific responses to daily fluctuations in car-

bon metabolism are also largely unknown.

Understanding how plants communicate carbon status

over long distances is critical for increasing our knowledge

of plants as integrated systems. Plant hormones and

sugars themselves are obvious candidates for this job.

The glucose ‘sensor’ hexokinase HXK1 has been shown

to be important for nutrient, light and hormone signalling

in Arabidopsis, and the HKX1 mutant glucose insensitive2
(gin2) is insensitive to auxin and hypersensitive to cyto-

kinins [11]. Glucose downstream signalling also involves

the target-of-rapamycin (TOR) signalling pathway that

controls meristem activation via different transcriptional

activators [12]. Anthocyanin biosynthesis is induced by

sugars, and cytokinins can enhance this induction via the

cytokinin response regulators ARR1, ARR10 and ARR12,

[13]. This signalling cascade involves transcriptional ac-

tivation of MYB75/PAP1 by LONG HYPOCOTYL 5

(HY5) [14].

During germination and early seedling growth, there is

strong evidence that sugars and hormones interact close-

ly. The sucrose non-fermenting kinase 1 (SnRK1) is

under control of hormones (auxin, CKs, ABA) and sugars,

and has a role in coordinating signals during cotyledon

growth and differentiation [15]. Two recent reports sug-

gest that sucrose itself, rather than auxin, is acting as a

long-distance signal in promoting root growth [16] and

bud dormancy [17]. Both of these studies have strong

evidence that sucrose is getting to the target tissues, but

current methodologies make it difficult to get the needed

temporal and spatial resolution to be sure that the sucrose

effect is fully independent of auxin. New technologies

like fluorescent-labeled auxin [18], sugar sensors [19,20]

and methods to quantify auxin at the tissue-level [21] may

resolve the extent to which these signals act in sequence,

act independently or some synergistic combination of the

two possibilities.

Dealing with high sugar levels: the sugar-ABA
connection
Arabidopsis seedlings cannot survive growth on high sug-

ar-containing media (e.g. 6% glucose). This phenotype

led to elegant screens for mutants that are insensitive to

sugars. Interestingly, many of these mutants have defects

in ABA synthesis or signalling (see [22] for a review).

Although this might suggest that the use of high sugar

levels selected for mutants tolerant to osmotic stress,

insensitivity to sugars in these mutants is uncoupled from

the role of carbohydrates as an osmoticum. Two models

are possible for explaining the overlap between sugar and

ABA signalling. High sugar levels may trigger enhanced

ABA synthesis and this in turn activates ABA signalling

[23] or ABA signalling activates shared targets of a

separate sugar signalling pathway [24]. A synergistic
www.sciencedirect.com 
interaction between ABA and sugar signalling is sup-

ported by the fact that ABA alone cannot regulate some

sugar-dependent genes, although it has a clear enhancing

effect when provided with sucrose [25]. A key-element in

the ABA-sugar connection is the transcription factor ABI4

[26]. Several sugar-insensitive mutants are allelic to abi4,

and ABI4 is proposed to regulate sugar-responsive genes by

binding directly to their promoters (reviewed by [22]).

While high sugar induces ABI4 expression, this may be

a consequence of the developmental arrest triggered by

high sugar [24].

A new component of the sugar-ABA signalling pathway

was recently identified using natural variation analysis in

Arabidopsis [27�]. The Col-0 and C24 accessions in Ara-

bidopsis differ in their sensitivity to high (5.5%) glucose.

It was discovered that the QTL responsible for this

difference coincides with the ANAC60 gene, which dis-

plays distinct splicing variants in C24 and Col-0. The Col-

0 variant is localized in the nucleus, while the C24 variant

is membrane-localized. ANAC60 induction by glucose

requires ABA signalling and ABI4 activates the ANAC60

promoter, thus placing ANAC60 in the sugar-ABA signal-

ling pathway. Localization of ANAC60 in the nucleus

attenuates ABA signalling and results in sugar insensitiv-

ity, thus providing a potential negative feedback mecha-

nism on ABI4 action. The involvement of ABI4 linking

sugar and ABA signalling has been studied mostly during

germination, and it would be interesting to know if it

plays a role also in other environmental conditions affect-

ing sugar and ABA, such as during stress conditions.

Auxin, cytokinins, sugars and growth
Auxin and cytokinins are additional hormones with clear

links to sucrose sensing and signalling, and all three

compounds can function as short- and long-distance sig-

nalling molecules. This feature has led to the suggestion

that all three play a role in integration of growth and

development between shoots and roots. The multi-level

interactions between auxins, cytokinins and sucrose are

highly complex and not well understood, even in the

model Arabidopsis. Further complicating matters, many

studies involve manipulation of hormone and sugar

levels, and, although this has given very valuable infor-

mation, it may not accurately reflect in vivo conditions.

Several recent studies have connected sucrose to the

production of auxin [28,29,30�], a strong candidate for a

long-distance signal promoting lateral root production.

Auxin biosynthesis is induced by soluble sugars, and daily

fluctuations in sugar content are correlated with fluctua-

tions in auxin levels [30�]. The circadian clock also gates

sensitivity to auxin treatment [31]. Glucose treatment of

Arabidopsis seedlings induces expression of multiple

genes encoding auxin biosynthetic enzymes, including

YUCCA8 and YUCCA9 [30�], consistent with an earlier

report that a putative maize YUCCA gene is strongly
Current Opinion in Plant Biology 2015, 25:130–137
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induced by glucose [28]. Sucrose supplementation, re-

quired for rhythmic hypocotyl elongation, induces YUC-
CA9 in shoots but not roots, a similar pattern seen for

several other auxin-induced genes [29,32]. Interestingly,

sucrose effects on auxin levels are more pronounced in

roots than in shoots, suggesting sugars may impact auxin

transport and/or conjugation pathways as well. The

growth promoting effect of sucrose is likely through its

effect on auxin, as it can be partially mimicked by directly

adding auxin and can be blocked by adding polar auxin

inhibitors [29]. This mechanism is reminiscent of shade

avoidance syndrome, where shade detected primarily in

the cotyledons is transmitted by induction of auxin bio-

synthesis and increased rootward auxin transport [33�,34].

Auxin signalling has also been linked to sugar metabo-

lism. For example, down-regulation of the tomato auxin

response repressor SlARF4 led to a dramatic increase in

chloroplast number and an increase in sugar and starch

content in the fruit [35].

Cytokinin is also critical for growth, senescence and

stress tolerance, and regulation of cytokinin levels has

been used to engineer important crop species (reviewed

in [36]). Overexpression of the cytokinin biosynthetic

gene ISOPENTENYLTRANSFERASE (IPT) gene un-

der a stress-induced promoter increased drought stress

tolerance in rice [37]. The transgenic plants showed

increased sucrose content in source tissues and main-

tained nitrate acquisition in the root system. In Arabi-
dopsis seedlings, high CO2 levels increased root growth,

especially under abiotic stress conditions [38]. Low pH

and high CO2 led to an accumulation of glucose, sucrose

and starch, as well as an increase in auxin and a decrease

in cytokinin levels. These conditions were associated

with an increase in lateral root number. A role for

cytokinin biosynthesis in storage-organ formation was

recently discovered [39�]. Overexpression of the LONE-
LY GUY 1 (LOG1) gene in tomato induced tuber-like

organs from the axillary meristems. This indicates that

cytokinins play an important role in storage-organ

formation and in the regulation of source/sink relation-

ships.

Sugars and cytokinins interact during plant growth and

development, and these interactions can be both direct

and indirect, and involve cell-specific and long-distance

interactions. Transcript profiling of Arabidopsis seedlings

after glucose and cytokinin treatment showed that many

genes involved in stress responses and developmental

pathways were affected [40]. Glucose and cytokinins

acted both agonistically and antagonistically on gene

expression, and glucose had a strong effect on genes

involved in cytokinin metabolism and signalling. Cytoki-

nin deficiency, caused by constitutive overexpression of

cytokinin oxidase (CKX) genes, leads to drastic changes in

root and shoot growth [41]. The molecular mechanisms

are only partly known, and involve changes in the cell
Current Opinion in Plant Biology 2015, 25:130–137 
cycle and in photosynthetic activity, altered carbohydrate

distribution and source/sink relations.

Gibberellins, jasmonates, brassinosteroids,
sugars, and growth
Daily fluctuations in gibberellin (GA) sensitivity track the

fluctuations in sugar levels and are regulated by the

circadian clock [31,42]. The growth-repressing, GA-reg-

ulated DELLA proteins are more stable during the day,

consistent with higher sensitivity to gibberellins at night

[42]. This is in agreement with the evidence in rice and

Arabidopsis of higher GA content at dusk [7�,43], possibly

inducing the destabilization of DELLAs at night. The

higher GA level detected in the late afternoon correlates

well with the diurnal fluctuations in expression of GA

biosynthetic genes, peaking in the afternoon [7�].
Mutants defective in starch metabolism suffer from star-

vation at night and this negatively affects their growth at

night [6]. Additionally, it was shown that starvation at

night represses the mRNA level of kaurene synthase,

leading to low level of kaurene, a precursor of GA [7�].
Thus, it seems that the level of GA is regulated so that

growth is reduced when plants are suffering from carbon

starvation.

Recent evidence showing that sucrose stabilizes DELLA

proteins [44] provides an explanation for the negative

effect of GA [45] on the sucrose-dependent induction of

the anthocyanin biosynthetic pathway [46,47]. Loreti

et al. showed that GA repress the expression of several

sucrose-induced genes involved in anthocyanin synthesis

[45]. This repressive effect was strongly reduced in gai, a

mutant expressing a stabilized DELLA protein, thus

indicating that DELLAs are involved in the sucrose-

GA interaction [45]. Li et al. showed that sucrose, but

not glucose, stabilizes the DELLA protein REPRESSOR

OF GA (RGA) [44]. Given that DELLA proteins are

stabilized by sucrose [44], it would be tempting to spec-

ulate that the increased DELLA level during the day [42]

is due to the increased sucrose level during the day.

However, a higher growth rate during the day was ob-

served in a starchless mutant that displays much higher

sucrose levels during the light period [6]. This increase in

growth during the day would be in disagreement with a

higher DELLA protein level. The slower growth at night

in the starchless mutants [6] is likely due to the lack of

starch to fuel growth, together with the adjustment of the

GA level to match the lower growth potential deriving

from the lack of sugars at night [7�]. The dwarfism of GA-

deficient mutants is, instead, uncoupled from carbon

availability [48] indicating that GA is primarily required

for growth.

The importance of DELLAs in the regulation of a very

large number of plant developmental and stress response

programmes [49] suggests that they represent a point of

convergence for the hormonal and sucrose-dependent
www.sciencedirect.com



Sugar and hormone signaling networks Ljung, Nemhauser and Perata 133
regulatory networks (Figure 1). The induction of antho-

cyanin synthesis is a sucrose-specific phenomena [46],

and sucrose-dependent stabilization of DELLAs pro-

vides a relatively simple mechanism to connect sugars

with other signalling pathways. DELLAs activate tran-

scription of PAP1/MYB75 [50], the sucrose-induced tran-

scription factor required for anthocyanin synthesis [47].

Anthocyanin biosynthesis is positively regulated by jas-

monate, and this activation can be synergistically en-

hanced by sucrose [45]. Jasmonates act by releasing the

bHLH and MYB factors required for anthocyanin syn-

thesis from repression by JASMONATE-ZIM-DOMAIN

PROTEIN (JAZ) proteins [51].

DELLAs also connect sucrose and GA to brassinosteroids

(BR). The BR and GA pathways closely interact through
Figure 1

JAZ

HY5

DELLA

ARR

BZR

BZ
BA

CK

?

SUCROSE

STARCH

MALTOSE

GIBBERELLIN

bHLH

bHLH

MYB

MMYB75

Schematic representation of hormone-sugar interactions for the regulation o

anthocyanin synthesis by activating the transcription factor MYB75 through

influencing MYB75 transcription and, as a consequence, anthocyanin synth

DELLA level, sequestering BRZ1 and thus contributing to repressed growth

degradation of DELLA proteins. Jasmonates act by releasing the bHLH and

JAZ proteins [51]. CK enhance the sucrose-dependent pathway trough the 

BZR1-type DNA binding domains and thus could represent maltose sensors

details.

www.sciencedirect.com 
direct interaction of DELLA proteins with the BRASSI-

NAZOLE-RESISTANT 1 (BZR1) transcription factor

[52]. In this context, stabilization of DELLAs by sucrose

[44] would result in a higher DELLA level, sequestering

BRZ1 and thus contributing to repressed growth. The

situation in vivo may be more complicated, as DELLAs

effect on growth changes during development [53�]. The

recent evidence showing that two b-amylases (BAM7 and

BAM8) possess BZR1-type DNA binding domains raise

the exciting hypothesis that BAM7 and BAM8 could

represent maltose sensors linking starch metabolism to

BR signalling [54]. The bam7 bam8 mutant is dwarf, and

this is indeed suggestive of a role of these nuclear-local-

ized b-amylases in regulating growth, probably by com-

peting with BZR1 activity. The BZR1-BAM regulated

gene expression does not appear to correlate with maltose
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Sugars and plant hormones are key components in growth regulation.

Light, temperature and other environmental factors are sensed by the

aerial parts of the plant. This will affect photosynthesis and the

production of sugars, in turn regulating the levels of IAA and PIF

function. CKs, GAs and ABA also affect growth, and these signalling

pathways are linked with sugar and nutrient status. CKs, IAA and

sugars function as long-distance signals, affecting e.g. lateral root

development and shoot branching. IAA and sugars can be transported

from shoot to root, inducing lateral root development in order to

increase the uptake of water and nutrients from the soil, in turn

increasing the growth capacity of the shoot. Signalling from root to

shoot is also important for coordination of growth and development of

the whole plant. We are just starting to untangle these pathways,

discovering interacting partners and regulatory loops. In the future,

multiscale modeling of these pathways will be very helpful to integrate

all the information in order to get a better understanding of the

regulation of plant growth.
level; however, BAM8’s function as a transcriptional

activator, although independent of catalysis, requires an

intact substrate-binding site (Figure 1; [55�]).

PIFs connect sucrose to hormones and
environmental signals
The Phytochrome-Interacting Factor (PIF) family of

transcription factors seem to have their basic helix-

loop-helices in every process involving light, temperature

and growth [56]. As their family name implies, they were

originally identified through their direct interaction with

phytochromes [57]. Activated phytochromes target PIFs

for destruction, yet their relationship is far from a linear

hierarchy of action [58]. PIFs attenuate the light signal

through negative feedback on phytochrome transcription,

as well as by bringing them along when they are targeted

for proteasome-mediated degradation [59]. A combina-

tion of circadian clock and light regulation control the

activity of PIF4 and PIF5, leading to predictable daily

oscillations in seedling growth rates [60]. These PIF-

driven growth cycles depend on supplying seedlings with

exogenous sucrose [32,61]. PIFs, working in an antago-

nistic regulatory circuit with HY5, integrate light and

temperature cues to regulate photosynthetic genes [62].

Consistent with this central role at the crossroads of

environment and growth responses, the activity of

PIF4 and PIF5 have also recently been linked to dark-

induced senescence [63]. Evolution may be using the PIF

subnetwork to optimize growth responses in new envir-

onments, as a recent study of natural variation in 77

Arabidopsis accessions revealed a clear link between vari-

ation in clock-regulated expression of PIF4 and growth

rate [64].

Complexity can also be found in the relationship of PIFs

and auxin. Work on temperature and shade avoidance

have placed PIFs upstream of YUCCA genes and auxin

biosynthesis [33�,65,66,67], yet auxin response requires

PIF function [29,68] placing them downstream of auxin as

well (Figure 2). It is equally challenging to draw a linear

network between sugar, PIFs and auxin. Glucose induc-

tion of auxin biosynthesis was strongly enhanced in a pif1
pif3 pif4 pif5 ( pifQ) mutant background and strongly

repressed in plants overexpressing PIF5 [30�]. In contrast,

the higher levels of auxin promoted by sucrose supple-

mentation were lost in pifQ mutants, although the induc-

tion of YUCCA8 expression was enhanced [29].

PIFs directly target a number of genes involved in chlo-

roplast development and optimal function [69,70,71],

providing an additional connection between PIFs and

carbon metabolism. In addition, PIFs interact with a

number of other transcription factors, including key reg-

ulators of the auxin, gibberellins and brassinosteroid

response pathways [72]. While it is unlikely that all of

these factors are interacting in all tissues at all times, and

there is evidence that composition and function of growth
Current Opinion in Plant Biology 2015, 25:130–137 
promoting complexes are dynamic [53�], a refined spatial

and temporal PIF interaction map may provide critical

clues about cellular state. A multiscale mathematical

model of growth offers great promise for eventually
www.sciencedirect.com
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synthesizing metabolic and gene regulatory networks into

tools able to predict plant performance in new environ-

ments [73�], as well as highlighting the most functionally

important of the potential high-order protein complexes.

Concluding remarks
Sugars have long been appreciated as building blocks

required for plant growth. Their regulatory roles are just

beginning to be fully acknowledged. Not surprisingly,

hormonal signalling pathways are major targets for sugar

regulation: survival depends on integration of growth and

development with the metabolic status of the plant. Sugar

levels fluctuate depending on the efficiency of photosyn-

thesis, as well as on energy and growth requirements.

Furthermore, the spatiotemporal map of sugar status is

highly dynamic. Sugars are translocated from source to

sink tissues, making carbohydrates very interesting as

potential long-range signalling molecules. The recent

report indicating that sucrose rather than auxin is possibly

responsible for apical dominance [17] suggests that sugars

can indeed exert an important differentiation role. De-

spite rapid, exciting new evidences of sugar-hormone

cross-regulation, the identity of the molecular points of

convergence of these signalling pathways is still quite

limited, although DELLA and PIF proteins are good

candidates for molecular hubs operating at the crossroads

of many pathways. The regulatory network, is, however,

probably more complex and must include a role for sugars

in the regulation of hormone synthesis as well as hormone

signalling. A representation that is possibly closer to

reality is that of a interaction network of the hormonal

signalling pathways with an array of signalling pathways

related to the nutrient and energy status of the plants.
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